The long-wavelength geoid from three-dimensional spherical models of thermal and thermochemical mantle convection

نویسندگان

  • Xi Liu
  • Shijie Zhong
چکیده

The Earth’s long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lower mantle underneath the Pacific and Africa are chemically distinct and likely denser than the ambient mantle. In this study, we have formulated dynamically self-consistent 3-D spherical mantle convectionmodels to investigate how chemically distinct and dense piles above the core-mantle boundary may influence the geoid. Our dynamic models with realistic mantle viscosity structure produce dominantly spherical harmonic degree-2 convection, similar to that of the present-day Earth. The models produce two broad geoid and topography highs over twomajor thermochemical piles in the lower mantle, consistent with the positive geoid anomalies over the Pacific and African LLSVPs. Our geoid analysis showed that the bottom layer with dense chemical piles contributes negatively to the total geoid, while the layer immediately above the chemical piles contributes positively to the geoid, canceling out the effect of the piles. Thus, the bottom part of the mantle, as a compensation layer, has zero net contribution to the total geoid, and the thickness of the compensation layer is ~1000 km or 2 to 3 times as thick as the chemical piles. Our results help constrain and interpret the large-scale thermochemical structure of the mantle using surface observations of the geoid and topography, as well as seismic models of the mantle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-degree mantle convection with strongly temperature- and depth-dependent viscosity in a three-dimensional spherical shell

A series of numerical simulations of thermal convection of Boussinesq fluid with infinite Prandtl number, with Rayleigh number 10, and with the strongly temperatureand depthdependent viscosity in a three-dimensional spherical shell is carried out to study the mantle convection of singleplate terrestrial planets like Venus or Mars without an Earth-like plate tectonics. The strongly temperature-d...

متن کامل

A benchmark study on mantle convection in a 3-D spherical shell using CitcomS

[1] As high-performance computing facilities and sophisticated modeling software become available, modeling mantle convection in a three-dimensional (3-D) spherical shell geometry with realistic physical parameters and processes becomes increasingly feasible. However, there is still a lack of comprehensive benchmark studies for 3-D spherical mantle convection. Here we present benchmark and test...

متن کامل

Layered mantle convection: A model for geoid and topography

The long-wavelength geoid and topography are dynamic effects of a convecting mantle. The long-wavelength geoid of the Earth is controlled by density variations in the mantle and has been explained by circulation models involving whole mantle flow. However, the relationship of long-wavelength topography to mantle circulation has been a puzzling problem in geodynamics. We show that the dynamic to...

متن کامل

The Effects of Dynamic Topography and Thermal Isostasy on the Topogra- Phy and Geoid of Venus

Introduction: The Venusian geoid, gravity field, and topography have been used in a variety of applications and are the primary sources of information about the internal structure of the planet. We focus on the relationship between the geoid and topography to determine both the support mechanism for the topography and lithospheric density structure. Magnitude of Dynamic Topography: The long-wav...

متن کامل

Mantle Convection and the State of the Earth's Interior

Introduction During 1983-1986, the four year period covered by this review, emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analyzing the effects of more complicated, presumably more realistic models. This shift received impetus from developments in other branches of earth sci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015